Local Search for Heuristic Guidance in Tree Search

نویسندگان

  • Alexander Nareyek
  • Stephen F. Smith
  • Christian M. Ohler
چکیده

Recent work has shown the promise in using local-search “probes” as a basis for directing a backtracking-based refinement search. In this approach, the decision about the next refinement step is based on an interposed phase of sampling possible (but not necessarily feasible) variable assignments by local search. This information is then used to decide on which refinement to take, i.e., as a kind of variableand value-ordering strategy. In this paper, we investigate the efficiency of this hybrid search approach in the combinatorial domain of job-shop scheduling. First, we evaluate methods for improving probe-based guidance, by basing refinement decisions not only on the final assignment of the probe-construction phase but also on information gathered during the probeconstruction process. We show that such techniques can result in a significant performance boost. Second, we consider the relative strengths of probe-based search control and search control that is biased by more classically motivated variableand value-ordering heuristics (incorporating domainspecific knowledge) that are not based on local search. Our results indicate that — while probe-based search performs better than an uninformed search — use of domain-specific knowledge is a much more effective basis for search control than information about constraint interactions that is gained by local-search probes, and leads to substantially better performance. This paper provides only a brief overview. For a detailed presentation, please have a look at [2].

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Augmented Downhill Simplex a Modified Heuristic Optimization Method

Augmented Downhill Simplex Method (ADSM) is introduced here, that is a heuristic combination of Downhill Simplex Method (DSM) with Random Search algorithm. In fact, DSM is an interpretable nonlinear local optimization method. However, it is a local exploitation algorithm; so, it can be trapped in a local minimum. In contrast, random search is a global exploration, but less efficient. Here, rand...

متن کامل

CONFIGURATION OPTIMIZATION OF TRUSSES USING A MULTI HEURISTIC BASED SEARCH METHOD

Different methods are available for simultaneous optimization of cross-section, topology and geometry of truss structures. Since the search space for this problem is very large, the probability of falling in local optimum is considerably high. On the other hand, different types of design variables (continuous and discrete) lead to some difficulties in the process of optimization. In this articl...

متن کامل

Iterated Local Search Algorithm for the Constrained Two-Dimensional Non-Guillotine Cutting Problem

An Iterated Local Search method for the constrained two-dimensional non-guillotine cutting problem is presented. This problem consists in cutting pieces from a large stock rectangle to maximize the total value of pieces cut. In this problem, we take into account restrictions on the number of pieces of each size required to be cut. It can be classified as 2D-SLOPP (two dimensional single large o...

متن کامل

Using Greedy Randomize Adaptive Search Procedure for solve the Quadratic Assignment Problem

  Greedy randomize adaptive search procedure is one of the repetitive meta-heuristic to solve combinatorial problem. In this procedure, each repetition includes two, construction and local search phase. A high quality feasible primitive answer is made in construction phase and is improved in the second phase with local search. The best answer result of iterations, declare as output. In this stu...

متن کامل

A Framework for Adapting Population-Based and Heuristic Algorithms for Dynamic Optimization Problems

In this paper, a general framework was presented to boost heuristic optimization algorithms based on swarm intelligence from static to dynamic environments. Regarding the problems of dynamic optimization as opposed to static environments, evaluation function or constraints change in the time and hence place of optimization. The subject matter of the framework is based on the variability of the ...

متن کامل

MetaBoosting: Enhancing Integer Programming Techniques by Metaheuristics

This chapter reviews approaches where metaheuristics are used to boost the performance of exact integer linear programming (IP) techniques. Most exact optimization methods for solving hard combinatorial problems rely at some point on tree search. Applying more effective metaheuristics for obtaining better heuristic solutions and thus tighter bounds in order to prune the search tree in stronger ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004